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Abstract
In this paper, we focus on a hybrid quantum computing architecture using
stationary qubits inside an optical cavity and flying qubits (photons). It has been
shown that direct qubit–qubit interactions for two-qubit gate implementations
can be replaced by the experimentally less demanding generation of single
photons on demand and linear optics photon pair measurements. The outcomes
of these measurements indicate either the completion of the gate or the presence
of the original qubits such that the operation can be repeated until success.

PACS numbers: 03.67.Lx, 42.50.Dv

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The polarization (or temporal) degrees of freedom of photons have often been preferred as
a representation of qubits due to their long decoherence times and high speed as well as
their ability to distribute themselves in an optical network. However, photons cannot interact
directly with each other. Without nonlinear effects, photons can only be entangled to each
other via post-selected measurements and local operations. Moreover, linear optics alone
does not permit complete Bell measurements [1]. Thus such entangling operations between
photons are necessarily probabilistic. Moreover, in order to achieve success probabilities close
to unity, one requires the presence of highly entangled ancilla states and quantum teleportation
[2] as a universal quantum primitive [3].

Since the seminal proposal by Knill et al [2], substantial work has been done to reduce
the required resources needed for a realization of linear optics quantum computing [4]. In
fact, there have already been some preliminary feasibility studies on linear optics quantum
computing [5].
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Photons can be transmitted easily from point to point. Hence they are often regarded as
‘flying’ qubits. However, there is a trade-off between this feature and the ease of storage: it is
generally difficult to store them and to use them as a quantum memory or ‘stationary’ qubits.
On the other hand, qubits realized through atoms and ions provide good quantum memory
due to the relatively long decoherence times of their internal ground states. For stationary
qubits, it is relatively easy to implement single qubit rotations and read out information with a
very high precision. Experiments done in Innsbruck and Boulder have already demonstrated
the feasibility of such two-qubit gates for ion trap quantum computing [6, 7]. However, these
two-qubit gate operations are in general relatively vulnerable to decoherence and ion trap
quantum computing with many qubits is still a challenge.

It is therefore natural to consider a hybrid platform based on both flying and stationary
qubits. Such schemes have been explored [8–10], exploiting the benefits of stationary and
flying qubits and encoding the logical qubit in the ground states of a single atom as well as in
the polarization state of a photon. Recently, we have proposed a repeat-until-success (RUS)
quantum computing scheme [11, 12] that is robust, scalable and offers the possibility of storing
qubits for a long time.

In section 2, we describe the basic idea in the RUS scheme based on the single atom cavity
system. We also note that we could, in principle, construct cluster state computing through
a probabilistic scheme. One such example is based on dipole induced transparency and this
scheme is briefly sketched in section 3. In section 4, we briefly consider inefficient detectors
and its implications in the RUS computing scheme. In section 5, we summarize the main ideas
in this talk.

2. Repeat-until-success scheme

Consider two stationary qubits (for instance two single-atom cavities) [11]. Suppose the
two stationary qubits are initially prepared in a linear superposition of two internal states |g〉
and |m〉,

|ψin〉 = 1
2 (|g〉 + |m〉)(|g〉 + |m〉). (1)

Suppose that a photon is generated in each of the two sources, whose state (i.e. its polarization
or generation time) depends on the state of the source. Thus if the state of the source is |g〉,
then the corresponding photon created is |h〉, and if the source is prepared in state |m〉 then the
corresponding photon is |v〉. This operation can be interpreted as an entangling gate between
the state of the atom and the state of the photon created. Thus a simultaneous creation of a
photon in each source can then transfer the initial state (1) into

|ψenc〉 = 1
2 (|g〉|h〉 + |m〉|v〉)(|g〉|h〉 + |m〉|v〉)

= 1
2 (|gg〉|hh〉 + |gm〉|hv〉 + |mg〉|vh〉 + |mm〉|vv〉). (2)

Once the photons have been created, an entangling phase gate (for the photons) can be
implemented by allowing each photon to go through a Hadamard polarizer, resulting in the
state

|ψ ′
enc〉 = 1

2 (|gg〉(|hh〉 + |hv〉 + |vh〉 + |vv〉) + |gm〉(|hh〉 − |hv〉 + |vh〉 − |vv〉)
+ |mg〉(|hh〉 + |hv〉 − |vh〉 − |vv〉) + |mm〉(|hh〉 − |hv〉 − |vh〉 + |vv〉)). (3)

The photons are then directed into a polarizing beam splitter (PBS) which transmits photons
with state |h〉 but reflects photons with state |v〉. Thus photons with the state |hh〉 and |vv〉
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Figure 1. Schematic set-up for the detection of photons emitted from the single-photon source.
The photons first go through Hadarmard polarizers followed by a polarizing beam-splitter.

maintain separate paths after the PBS (i.e. anti-bunch) while photons with state |hv〉 and |vh〉
bunch. The schematic set-up for the detection is shown in figure 1.

It is instructive to see that the state after the PBS can be written as

|ψ ′′
enc〉 = 1

2 {(|gg〉 + |mm〉)(|hh〉 + |vv〉) + (|gm〉 + |mg〉)(|hh〉 − |vv〉)
+ (|g〉 + |m〉)(|g〉 − |m〉)|hv〉 + (|g〉 − |m〉)(|g〉 + |m〉)|vh〉}. (4)

With linear optics, it is well known that it is impossible to perform a complete ‘Bell state’
measurement [1]. Instead, we consider the following states:

|�1〉 ≡ 1√
2
[|hh〉 + |vv〉], |�2〉 ≡ 1√

2
[|hh〉 − |vv〉],

|�3〉 ≡ |hv〉, |�4〉 ≡ |vh〉.
(5)

This can be done easily by placing two additional beam splitters at each output. Thus, one finds
that if the outcome is |�1〉 or |�2〉 (with probability 1/2), the stationary qubit is maximally
entangled and if the outcome is |�3〉 or |�4〉, the atoms can be reset to their original state by
appropriate local operations.

For pedagogical reasons, we have restricted the state of the atoms to be an equal
superposition of the states |g〉 and |m〉. More generally, we could consider the states
of the atoms as |φin〉 = α00|gg〉 + α01|gm〉 + α10|mg〉 + α11|mm〉, where αij are arbitrary
coefficients of the state of the atoms. On emission of the photons, we get the encoded state
|φenc〉 = α00|gg〉|hh〉 + α01|gm〉|hv〉 + α10|mg〉|vh〉 + α11|mm〉|vv〉.

The entire process of allowing the photons to go through polarizers and polarizing beam
splitters followed by appropriate measurements in partial Bell basis corresponds to a generic
measurement in some mutually unbiased basis. In this case, we consider the basis

|�1〉 = 1√
2
(|x1x2〉 + |y1y2〉) |�2〉 = 1√

2
(|x1x2〉 − |y1y2〉)

|�3〉 = |x1y2〉 |�3〉 = |x2y1〉,
(6)
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where |x1〉 = 1√
2
(|h〉 + |v〉), |x2〉 = i√

2
(|h〉 − |v〉), |y1〉 = 1√

2
(|h〉 − |v〉) and |y2〉 =

1√
2
(|h〉 + |v〉) = |x1〉. Expanding �i (i = 1, . . . , 4) in terms of |h〉 and |v〉 gives

|�1〉 = exp(iπ/4)

2
(|hh〉 − i|hv〉 + i|vh〉 − |vv〉)

|�2〉 = − exp(−iπ/4)

2
(|hh〉 + i|hv〉 − i|vh〉 − |vv〉)

|�3〉 = 1

2
(|hh〉 + |hv〉 + |vh〉 + |vv〉)

|�3〉 = i

2
(|hh〉 − |hv〉 − |vh〉 + |vv〉).

(7)

Thus, it is easily seen that a measurement in the designated basis yields with equal probability
the following results:

|ψ1〉 = exp
(
− iπ

4

)
Z1

(π

2

)
Z2

(
−π

2

)
UCZ|ψin〉

|ψ2〉 = − exp
( iπ

4

)
Z1

(
−π

2

)
Z2

(π

2

)
UCZ|ψin〉

|ψ3〉 = |ψin〉
|ψ4〉 = −iZ1(π)Z2(π)|ψin〉,

(8)

so that clearly a measurement result in |�1〉 or |�2〉 yields an entangling gate (actually a
control-phase gate), namely |ψ1〉|ψ2〉, on the qubits, whereas a measurement result in |�3〉
or |�4〉 yields the original input state (|ψ3〉 or |ψ4〉), up to some local unitary transformation.
Here Zi(θ) is the unitary transformation diag(1, exp(−iθ)) acting on the ith atom and
UCZ = diag(1, 1, 1,−1). Here we have mapped |h〉 to logical |0〉 in the usual computational
basis and |v〉 to logical |1〉.

3. Probabilistic schemes

It is probably interesting to note that for the construction of cluster states it is not essential
to have a ‘repeat-until-success’ scheme. There are several schemes [12–14]. However, in
one recent elegant proposal [14], atoms in a cavity interact with a waveguide system and get
entangled using dipole induced transparency. Although the atoms at the end of the operations
are always entangled, one could in principle repeat the scheme by preparing the atoms again.
In the scheme, one considers a cavity containing a single dipole emitter evanescently coupled
to two waveguides as in figure 2. The cavity may be detuned from cavity resonance, ω0

with the vacuum Rabi frequency of the dipole being g̃. Each dipole is assumed to have three
relevant states: a ground state |g〉, an excited state |e〉 and a long-lived metastable state |m〉.
The transition from the ground state to the excited state is assumed to be resonant with the
cavity and the transition from the metastable state to the excited state is off resonance. It can
be shown that when the dipole is in state |m〉, it does not couple to the cavity. However, if
the dipole is in state |g〉, the waveguide transmits perfectly. Thus, we see that the system
transforms accordingly as â

†
in|g〉|0〉 → â

†
out|g〉|0〉 and â

†
in|m〉|0〉 → −ĉ

†
out|m〉|0〉.

The entangling scheme essentially uses two Mach–Zehnder interferometers set-up to
entangle the atoms in the cavity as shown in figure 3. A weak coherent pulse is then split
by a beam splitter and sent to two independent cavities containing dipoles coupled to the
waveguides. The dipoles are initialized to (|g〉 + |m〉)/√2. The waveguide fields are then
mixed on a beam splitter so that either detector A and C register constructive interference.
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Figure 2. A drop-filter cavity-waveguide system in which a single dipole emitter is evanescently
coupled to two waveguides.

Figure 3. The system is set up so that a detection event in B or D signifies that the atoms have
collapsed to the state 1/

√
2(|gm〉 − |mg〉), otherwise the atom are not maximally entangled and

the system can be repeated if the atom is reset to a linear superposed state of |g〉 and |m〉 again.

More specifically, the state of the cavity-photon set-up after the mixing is

|ψenc〉 = 1
2 |gg〉(|ab〉 + i|bb〉 + i|aa〉 − |ba〉) + 1

2 |gm〉(|ad〉 + i|ac〉 + i|bd〉 − |bc〉)
+ 1

2 |mg〉(|cb〉 + i|ca〉 + i|db〉 − |da〉) + 1
2 |mm〉(|cd〉 + i|cc〉 + i|dd〉 − |dc〉), (9)

where |ij 〉 (i, j = a, b, c, d) represent the state of the photons along the path i and j . Clearly,
photonic states denoted by |ii〉 correspond to photon bunching in the respective detectors.
However, a detection event in A and D respectively (or B and C) signifies that the atoms have
collapsed to the state 1/

√
2(|gm〉 − |mg〉), and a detection event in A and C (or B and D)

means that the atoms have collapsed to the state 1/
√

2(|gm〉 + |mg〉), otherwise the atoms are
not maximally entangled and the system needs to be reset by initializing the atom to a linear
superposed state of |g〉 and |m〉 again. Note that in this case, the original states of the atoms
are destroyed unlike the previous scheme [11]. However, it would be interesting to investigate
its possible realization using nanowires [15].

4. Inefficient detectors

Note that the implementation of such schemes does not necessarily require photon-number
resolving detectors. Under ideal conditions, all outcomes of the photon pair measurement are
distinguishable. However, in the real world, photon detectors have finite efficiency η < 1
so that photon generation succeeds only with a probability close to (but not equal to) 1 [16].
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In figure 1, any failure to observe two photons in the set-up means that the atoms will be
left in an unknown state. If such errors are small (less than 1%), the resulting gate failures
can be overcome with existing fault tolerance techniques. Quantum computing with single
photon sources with a high fidelity is nevertheless feasible, if one employs one-way quantum
computing [17, 18] and uses photon detectors with a low-enough dark count rate.

By constructing a cluster state, it is possible under one-way quantum computing to realize
an algorithm solely through local measurements, which can be performed with a high precision.
To obtain a cluster state, one can use the RUS scheme to prepare an Ising gate [12] and apply
the controlled phase operation wherever a cluster state bond is needed. For η < 1, one may
not always know if the construction of a bond has succeeded or not; however if the procedure
is not successful, one can always repeat the bonding attempt. Moreover, this construction
can be done over an already prepared but smaller cluster state. As long as the efficiency of
detectors and photon sources is not too low, an N-qubit cluster state can be built in a time
faster than polynomial in N [18].

5. Conclusion

In this paper, we have reviewed and discussed at length the basic ideas behind RUS quantum
computing scheme and suggested the possibility of using a different scheme for the purpose.
We have also briefly discussed the possibility of constructing cluster states by repeatedly using
entangling operations similar to the construction of maximally entangled stationary states.
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